题目内容
某种植物的主干长出若干数目的枝干,每个枝干又长出相同数目的小分支,若小分支、枝干和主干的总数是73,则每个枝干长出 个小分支.
估算的值( )
A. 在1和2之间 B. 在2和3之间 C. 在3和4之间 D. 在4和5之间
下列各式符合代数式书写规范的是( )
A. B. a×3 C. 3x﹣1个 D.
用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是( )
A. ①④⑤ B. ②⑤⑥ C. ①②③ D. ①②⑤
下列条件中,不能判断△ABC为直角三角形的是 ( )
A. a=1.5 b=2 c=2.5 B. a:b:c=5:12:13
C. ∠A+∠B=∠C D. ∠A:∠B:∠C=3:4:5
为了迎接校庆,初三年级组织乒乓球比赛,赛制为单循环形式(每两个选手之间都必须赛一场),全年级共进行了28场比赛,这次参赛的选手有 ( )
A. 7位 B. 8位 C. 9位 D. 10位
有一人患了流感,经过两轮传染后共有64人患了流感.那么每轮传染中平均一个人传染的人数为 ( )
A. 10 B. 9 C. 8 D. 7
下列图形中,是轴对称图形,但不是中心对称图形的是( )
A. B. C. D.
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五.它被记载于我国古代著名数学著作《周髀算经》中,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图①,在矩形纸片ABCD中,AD=8 cm,AB=12 cm.
第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.
问题解决
(1)请在图②中证明四边形AEFD是正方形;
(2)请在图④中判断NF与ND′的数量关系,并加以证明;
(3)请在图④中证明△AEN是(3,4,5)型三角形.