题目内容
解分式方程
-
+3=0时,设
=y,则原方程变形为( )
x |
x2-2 |
x2-2 |
x |
x |
x2-2 |
A、y2+3y+1=0 |
B、y2+3y-1=0 |
C、y2-3y+1=0 |
D、y2-3y-1=0 |
分析:若设
=y,则
=
,那么,原方程可化为:y-
+3=0,然后化为整式方程.
x |
x2-2 |
x2-2 |
x |
1 |
y |
1 |
y |
解答:解:设
=y,则
=
,
∴原方程可化为:y-
+3=0,
方程两边都乘最简公分母y得y2-1+3y=0,
整理得y2+3y-1=0.
故选B.
x |
x2-2 |
x2-2 |
x |
1 |
y |
∴原方程可化为:y-
1 |
y |
方程两边都乘最简公分母y得y2-1+3y=0,
整理得y2+3y-1=0.
故选B.
点评:本题考查用换元法化简分式方程.换元后需再乘最简公分母化为整式方程.
练习册系列答案
相关题目
解分式方程
-
+3=0时,利用换元法设
=y,把原方程变形成整式方程为( )
x |
x2-2 |
x2-2 |
x |
x |
x2-2 |
A、y2+3y+1=0 |
B、y2-3y+1=0 |
C、y2-3y-1=0 |
D、y2+3y-1=0 |
用换元法解分式方程
-
+2=0时,设y=
,原方程可变形为( )
x |
x2+1 |
3x2+3 |
x |
x |
x2+1 |
A、y2+2y-3=0 |
B、y2-3y+2=0 |
C、3y2-y+2=0 |
D、y2-2y+3=0 |