题目内容
如图,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P在边BC上,则∠PAB的度数可能为______(写出一个符合条件的度数即可)
∵AB是⊙O的直径,BC为⊙O的切线,
∴AB⊥BC,
∴∠ABC=90°,
∴∠ACB=40°(已知),
∴∠CAB=50°(直角三角形的两个锐角互余);
又∵点P在边BC上,
∴0<∠PAB<∠CAB,
∴∠PAB可以取49°,45°,40…
故答案可以是:45°
∴AB⊥BC,
∴∠ABC=90°,
∴∠ACB=40°(已知),
∴∠CAB=50°(直角三角形的两个锐角互余);
又∵点P在边BC上,
∴0<∠PAB<∠CAB,
∴∠PAB可以取49°,45°,40…
故答案可以是:45°
练习册系列答案
相关题目