题目内容
【题目】如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于( )
A.
B.
C.
D.
【答案】B
【解析】解:如图,设B′C′与CD相交于点E,
在Rt△ADE和Rt△AB′E,
,
∴Rt△ADE≌Rt△AB′E(HL),
∴∠EAB′=∠EAD,
∵旋转角为30°,
∴∠BAB′=30°,
∴∠EAD= (90°﹣30°)=30°,
在Rt△ADE中,ED=ADtan30°=1× = ,
∴这个风筝的面积=2×S△ADE=2× ×1× = ;
故选:B.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形,以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.
练习册系列答案
相关题目