题目内容
某公司2011年1-6月份销售额(万元)依次为:38,42,50,38,40,44.则2011年1-6月份销售额的中位数是
- A.38
- B.40
- C.41
- D.42
C
分析:根据中位数的定义,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数求解即可.
解答:将一组数据从小到大排列,中间两个数为40,42,则中位数为(40+42)÷2=41.
故选C.
点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
分析:根据中位数的定义,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数求解即可.
解答:将一组数据从小到大排列,中间两个数为40,42,则中位数为(40+42)÷2=41.
故选C.
点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
练习册系列答案
相关题目
为了响应国家推行“节能减排,低碳经济”号召,某公司2011年研发出一种新型节能产品,2011年下半年上市后价格一路攀高.该产品的售价y(元/个)与月份x(7≤x≤12,且x取正整数)之间的关系如下表:
月份x | 7月 | 8月 | 9月 | 10月 | … |
售价 y(元/个) | 56 | 60 | 64 | 68 | … |
该产品的月销售量p(百个)与月份x(7≤x≤12,且x取正整数)之间满足函数关系:p=-2x+50.
(1)请观察题中格,用所学过一次函数、反比例函数或二次函数有关知识,求出该产品的售价y(元/个)与月份x的函数关系式;
(2)请问该公司第几月份销售额达到最大?最大销售额是多少元?
(3)今1月份开始售价上涨减缓,每月比上月上涨2元/个,且月销售量在去年12月的月销售量的基础上每月减少300个.4月下旬以来,全国各地严重缺电,受“电荒限电”的影响,该公司5月产量下降,导致5月的销售量比4月份下降1.5a%.该公司为了稳定销售额,决定涨价销售,5月的销售价格比4月份上涨0.5a%.此种商品在第5月的销售额比第4月的销售额刚好少16800元,请你参考以下数据,通过计算估算出的a整数值.
为了响应国家推行“节能减排,低碳经济”号召,某公司2011年研发出一种新型节能产品,2011年下半年上市后价格一路攀高.该产品的售价y(元/个)与月份x(7≤x≤12,且x取正整数)之间的关系如下表:
该产品的月销售量p(百个)与月份x(7≤x≤12,且x取正整数)之间满足函数关系:p=-2x+50.
(1)请观察题中格,用所学过一次函数、反比例函数或二次函数有关知识,求出该产品的售价y(元/个)与月份x的函数关系式;
(2)请问该公司第几月份销售额达到最大?最大销售额是多少元?
(3)今1月份开始售价上涨减缓,每月比上月上涨2元/个,且月销售量在去年12月的月销售量的基础上每月减少300个.4月下旬以来,全国各地严重缺电,受“电荒限电”的影响,该公司5月产量下降,导致5月的销售量比4月份下降1.5a%.该公司为了稳定销售额,决定涨价销售,5月的销售价格比4月份上涨0.5a%.此种商品在第5月的销售额比第4月的销售额刚好少16800元,请你参考以下数据,通过计算估算出的a整数值.
月份x | 7月 | 8月 | 9月 | 10月 | … |
售价 y(元/个) | 56 | 60 | 64 | 68 | … |
(1)请观察题中格,用所学过一次函数、反比例函数或二次函数有关知识,求出该产品的售价y(元/个)与月份x的函数关系式;
(2)请问该公司第几月份销售额达到最大?最大销售额是多少元?
(3)今1月份开始售价上涨减缓,每月比上月上涨2元/个,且月销售量在去年12月的月销售量的基础上每月减少300个.4月下旬以来,全国各地严重缺电,受“电荒限电”的影响,该公司5月产量下降,导致5月的销售量比4月份下降1.5a%.该公司为了稳定销售额,决定涨价销售,5月的销售价格比4月份上涨0.5a%.此种商品在第5月的销售额比第4月的销售额刚好少16800元,请你参考以下数据,通过计算估算出的a整数值.