题目内容

【题目】如图,已知在正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,给出下列结论:
①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF.
其中结论正确的共有(  )

A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等边三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,

∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正确).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正确),
∵BC=CD,
∴BC﹣BE=CD﹣DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正确).
设EC=x,由勾股定理,得
EF=x,CG=x,
AG=AEsin60°=EFsin60°=2×CGsin60°=x,
∴AC=
∴AB=
∴BE=﹣x=
∴BE+DF=x﹣x≠x.(故④错误).
正确的有3个.
故选:C.
【考点精析】根据题目的已知条件,利用正方形的性质的相关知识可以得到问题的答案,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网