题目内容
【题目】(2016·西宁中考)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6, ,求BE的长.
【答案】(1)见解析 (2)
【解析】试题分析:(1)连OD,由AB是⊙O的直径,根据圆周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠ODB,于是∠CDA+∠ADO=90°,根据切线的判定即可得证;
(2)根据已知条件得到△CDA∽△CBD由相似三角形的性质得到,求得CD=4,由切线长定理得到BE=DE,BE⊥BC,在Rt△CBE中根据勾股定理列方程即可得到结论.
试题解析:(1)证明:连接OD.
∵OB=OD,
∴∠OBD=∠BDO.
∵∠CDA=∠CBD,
∴∠CDA=∠ODB.
又∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ADO+∠CDA=90°,
即∠CDO=90°,
∴OD⊥CD.
∵OD是⊙O的半径,
∴CD是⊙O的切线;
(2)解:∵∠C=∠C,∠CDA=∠CBD,
∴△CDA∽△CBD,
∴=.
∵=,BC=6,
∴CD=4.
∵CE,BE是⊙O的切线,
∴BE=DE,BE⊥BC,
∴BE2+BC2=EC2,
即BE2+62=(4+BE)2,
解得BE=.
练习册系列答案
相关题目