题目内容
如图,在△ABC中,点D、E分别在边AB、AC上,联结DE,如果AD:BD=2:3,那么下列条件中能判断DE∥BC的是( )
A. = B. = C. = D. =
如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒4个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒4个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒).
(1)求t=1时点P表示的有理数;
(2)求点P与点B重合时的t值;
(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);
(4)当点P表示的有理数与原点的距离是2个单位长度时,请求出所有满足条件的t值.
下列五个命题:两个端点能够重合的弧是等弧;圆的任意一条弧必定把圆分成劣弧和优弧两部分经过平面上任意三点可作一个圆;任意一个圆有且只有一个内接三角形三角形的外心到各顶点距离相等.其中真命题有( )
A. 个 B. 个 C. 个 D. 个
如图,OC是∠AOB的平分线,点P在OC上且OP=4,∠AOB=60°,过点P的动直线DE交OA于D,交OB于E,那么=_____.
如图,在平行四边形ABCD中,E、F分别是BC边,CD边的中点,AE、AF分别交BD于点G,H,设△AGH的面积为S1,平行四边形ABCD的面积为S2,则S1:S2的值为( )
A. B. C. D.
某种水果进价为每千克20元,市场调查发现,该水果每天的销售量y(千克)与售价x(元/千克)有如下关系:y=﹣2x+80,设这种水果每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该水果售价定为每千克多少元时,每天销售利润最大?最大利润是多少元?
(3)如果商家为“薄利多销”,规定这种水果售价每千克不高于28元,则商家要想每天获利150元的销售利润,售价应定为每千克多少元?
(1)问题背景
如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为上一动点(不与B,C重合),
求证:PA=PB+PC.
请你根据小明同学的思考过程完成证明过程.
(2)类比迁移
如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.
(3)拓展延伸
如图,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,则OC的最小值为 .
如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为( )
A. 1 B. ﹣1 C. D. 2﹣1
如图,弦垂直于的直径,垂足为,且,,则的长为________.