题目内容
如图所示,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分
规定:线上各点不属于任何部分,点动点P若在某个部分时,连接PA、PB、构成∠PAC,∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立,若不成立,请写出∠APB、∠PAC、∠PBD之间存在的一个关系式.
规定:线上各点不属于任何部分,点动点P若在某个部分时,连接PA、PB、构成∠PAC,∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立,若不成立,请写出∠APB、∠PAC、∠PBD之间存在的一个关系式.
分析:(1)首先过P作PQ∥AC,由AC∥BD,即可证得AC∥PQ∥BD,然后根据两直线平行,内错角相等,即可得∠APQ=∠PAC,∠BPQ=∠PBD,继而求得答案;
(2)首先过P作PQ∥AC,由AC∥BD,即可证得AC∥PQ∥BD,然后根据两直线平行,同旁内角互补,即可求得∠PAC+∠APB+∠PBD=360°.
(2)首先过P作PQ∥AC,由AC∥BD,即可证得AC∥PQ∥BD,然后根据两直线平行,同旁内角互补,即可求得∠PAC+∠APB+∠PBD=360°.
解答:(1)证明:过P作PQ∥AC,则∠APQ=∠PAC. …(1分)
∵AC∥BD,
∴PQ∥BD.
∴∠BPQ=∠PBD. …(2分)
∴∠APQ+∠BPQ=∠PAC+∠PBD.
即∠APB=∠PAC+∠PBD. …(6分)
(2)解:当动点P在第②部分时,结论∠APB=∠PAC+∠PBD不成立,…(8分)
过P作PQ∥AC,
∵AC∥BD,
∴AC∥PQ∥BD,
∴∠APQ+∠PAC=180°,∠QPB+∠PBD=180°,
∴∠PAC+∠APB+∠PBD=360°,
即其存在的关系式是∠PAC+∠PBD=360°-∠APB. …(10分)
∵AC∥BD,
∴PQ∥BD.
∴∠BPQ=∠PBD. …(2分)
∴∠APQ+∠BPQ=∠PAC+∠PBD.
即∠APB=∠PAC+∠PBD. …(6分)
(2)解:当动点P在第②部分时,结论∠APB=∠PAC+∠PBD不成立,…(8分)
过P作PQ∥AC,
∵AC∥BD,
∴AC∥PQ∥BD,
∴∠APQ+∠PAC=180°,∠QPB+∠PBD=180°,
∴∠PAC+∠APB+∠PBD=360°,
即其存在的关系式是∠PAC+∠PBD=360°-∠APB. …(10分)
点评:此题考查了平行线的性质.此题难度适中,解题的关键是准确作出辅助线,掌握两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.
练习册系列答案
相关题目