题目内容

【题目】如图,在Rt△ABC中,∠C=90°,AC=1,BC=,点ORt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),则∠A′BC=______,OA+OB+OC=______.

【答案】90° .

【解析】

(1)先根据三角函数的定义求出∠ABC的度数,再根据旋转的性质得OA=O′A′,BO=BO′,BA′=BA=2,OBO′=ABA′=60°,BO′A′=BOA=120°,则∠CBA′=CBA+ABA′=90°;

(2)先判断BOO′为等边三角形,所以OO′=BO,BOO′=BO′O=60°,再证明点C、O、O′、A′共线,从而得到A′C=OC+OB+OA,然后利用勾股定理计算A′C即可.

解:(1)∵∠C=90°,AC=1,BC=

tanABC==,AB=2,

∴∠ABC=30°,

∵将AOB绕点B顺时针方向旋转60°,得到A′O′B(得到A、O的对应点分别为点A′、O′),

OA=O′A′,BO=BO′,BA′=BA=2,OBO′=ABA′=60°,BO′A′=BOA=120°,

∴∠A′BC=CBA+ABA′=30°+60°=90°;

(2)BO=BO′,OBO′=ABA′=60°

∴△BOO′为等边三角形,

OO′=BO,BOO′=BO′O=60°,

而∠BOC=120°,

∴∠COO′=BOC+BOO′=60°+120°=180°,

∴点O′在直线CO上,

同理可得点O、O′、A′共线,

A′C=OC+OO′+O′A′=OC+OB+OA,

∵∠CBA′=CBA+ABA′=30°+60°=90°,

A′C==

OA+OB+OC=

故答案为90°,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网