题目内容
【题目】某市是世界有机蔬菜基地,数10种蔬菜在国际市场上颇具竞争力.某种有机蔬菜上市时,某经销商按市场价格10元/千克收购了2000千克某种蔬菜存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.5元,但冷库存放这批蔬菜时每天需要支出各种费用合计340元,而且这种蔬菜在冷库中最多保存110天,同时,平均每天将会有6千克的蔬菜损坏不能出售.
(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式.
(2)经销商想获得利润22500元,需将这批蔬菜存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?
【答案】(1)y=-3x2+940x+20000(1≤x≤110)
(2)50
(3)30000
【解析】
试题分析:(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量-6×存放天数)”列出函数关系式;
(2)按照等量关系“利润=销售总金额-收购成本-各种费用”列出函数方程求解即可;
(3)根据等量关系“利润=销售总金额-收购成本-各种费用”列出函数关系式并求最大值.
试题解析:(1)由题意得y与x之间的函数关系式为y=(10+0.5x)(2000-6x)
=-3x2+940x+20000(1≤x≤110)
(2)-3x2+940x+20000-10×2000-340x=22500
解方程得:x1=50;x2=150(不合题意,舍去)
(3)设最大利润为W,由题意得W=-3x2+940x+20000-10×2000-340x
W=-3(x-100)+30000,100天<110天
∴当x=100时,W最大=30000
答:存放100天后出售这批香菇可获得最大利润30000元