题目内容
如图,已知DE是直角梯形ABCD的高,将△ADE沿DE翻折,腰AD恰好经过腰BC的中点,则AE:BE等于( )
A.2:1 | B.1:2 | C.3:2 | D.2:3 |
∵将△ADE沿DE翻折,腰AD恰好经过腰BC的中点F,
∴DF=FA′,
∵DC∥AB,DE是高,ABCD是直角梯形,
∴DE∥BC,
∴四边形DEBC是平行四边形,
∴DC=BE,
∵DC∥AB,
∴∠C=∠FBA′,
在△DCF和△A′BF中
|
∴△DCF≌△A′BF(ASA),
∴DC=BA′=BE,
∵将△ADE沿DE翻折,腰AD恰好经过腰BC的中点,A和A′重合,
∴AE=A′E=BE+BA′=2BE,
∴AE:BE=2:1,
故选A.
练习册系列答案
相关题目