题目内容
【题目】如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6 ,∠BAD=60°,且AB>6 .
(1)求∠EPF的大小;
(2)若AP=10,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.
【答案】
(1)
解:过点P作PG⊥EF于点G,如图1所示.
∵PE=PF=6,EF=6 ,
∴FG=EG=3 ,∠FPG=∠EPG= ∠EPF.
在Rt△FPG中,sin∠FPG= = = ,
∴∠FPG=60°,
∴∠EPF=120°.
(2)
解:过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.
∵AC为菱形ABCD的对角线,
∴∠DAC=∠BAC,AM=AN,PM=PN.
在Rt△PME和Rt△PNF中,PM=PN,PE=PF,
∴Rt△PME≌Rt△PNF,
∴ME=NF.
又AP=10,∠PAM= ∠DAB=30°,
∴AM=AN=APcos30°=10× =5 ,
∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=10
(3)
解:如图,
当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P1,P之间运动,
∴P1O=PO=3,AO=9,
∴AP的最大值为12,AP的最小值为6
【解析】(1)根据锐角三角函数求出∠FPG,最后求出∠EPF.(2)先判断出Rt△PME≌Rt△PNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出AP最大和最小值.此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线.
练习册系列答案
相关题目