题目内容
【题目】任取不等式组 的一个整数解,则能使关于x的方程:2x+k=﹣1的解为非负数的概率为 .
【答案】
【解析】解:∵解不等式组 的解集为:﹣ <k≤3,
∴整数解为:﹣2,﹣1,0,1,2,3,
关于x的方程:2x+k=﹣1的解为:x=﹣ ,
∵关于x的方程:2x+k=﹣1的解为非负数,
∴k+1≤0,
解得:k≤﹣1,
∴能使关于x的方程:2x+k=﹣1的解为非负数的为:﹣1,﹣2;
∴能使关于x的方程:2x+k=﹣1的解为非负数的概率为: = .所以答案是: .
【考点精析】解答此题的关键在于理解一元一次不等式组的整数解的相关知识,掌握使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集(简称不等式组的解),以及对概率公式的理解,了解一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.
练习册系列答案
相关题目
【题目】自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )
组别 | 月用水量x(单位:吨) |
A | 0≤x<3 |
B | 3≤x<6 |
C | 6≤x<9 |
D | 9≤x<12 |
E | x≥12 |
A.18户
B.20户
C.22户
D.24户