题目内容

【题目】如图,从某建筑物9米高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面12米,建立平面直角坐标系,如图.

1)求抛物线的解析式;

2)求水流落地点B离墙的距离OB

【答案】1y=﹣3x2+6x+9;(23米.

【解析】

1)先根据题意确定所求抛物线的顶点M和点A的坐标,再利用待定系数法求解;

2)根据(1)中求得的二次函数解析式即可求解.

解:(1)根据题意,得A09),顶点M112),

于是设抛物线解析式为yax12+12

A09)代入,得9=a+12,解得a=﹣3

所以抛物线的解析式为y=﹣3x12+12=﹣3x2+6x+9

答:抛物线的解析式为y=﹣3x2+6x+9

2)当y0时,0=﹣3x2+6x+9,解得x13x2=﹣1

所以B30).

答:水流落地点B离墙的距离OB3米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网