题目内容
(2017南京)“直角”在初中几何学习中无处不在.
如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).
如图、两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,八条直线相交最多有 交点.
在上海的小明一家将于5月1日到苏州进行自驾游,准备将行程分为上午和下午,上午的备选地点为:A-重元寺、B-苏州乐园、C-观前街,下午的备选地点为:D-李公堤、E-金鸡湖摩天轮公园.
(1)请用画树状图或列表的方法写出小明家所有可能的游玩方式(用字母表示即可);
(2)求小明一家恰好整天在工业园区游玩的概率.(提示:重元寺、李公堤、金鸡湖摩天轮公园在工业园区)
若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )
A. k> B. k≥ C. k>且k≠1 D. k≥且k≠1
折纸的思考.
(操作体验)
用一张矩形纸片折等边三角形.
第一步,对折矩形纸片ABCD(AB>BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②).
第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB,PC,得到△PBC.
(1)说明△PBC是等边三角形.
(数学思考)
(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC,他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.
(3)已知矩形一边长为3cm,另一边长为a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.
(问题解决)
(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为 cm.
定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.
如图,△ABC中,∠ABC=90º,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD,若∠DBC=60º,∠ACB=15º,BD=,则菱形ACEF的面积为 .
中国的领水面积约为370 000 km2,将数370 000用科学计数法表示为:__________。
(2016广东省茂名市)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是__________.
将一副直角三角板如图放置,那么∠AOB的大小为( )
A. 150° B. 135°
C. 120° D. 90°