题目内容
【题目】如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=.
(1)求证:△ABP∽△PCD;
(2)求△ABC的边长.
【答案】(1证明见解析;(2)3.
【解析】
(1)根据等边三角形性质求出AB=BC=AC,∠B=∠C=60°,推出∠BAP=∠DPC,即可得出结论;
(2)与相似三角形的性质得出比例式,代入求出AB即可.
(1)∵△ABC是等边三角形,
∴AB=BC=AC,∠B=∠C=60°,
∴∠BAP+∠APB=180°﹣60°=120°,
∵∠APD=60°,
∴∠APB+∠DPC=180°﹣60°=120°,
∴∠BAP=∠DPC,
即∠B=∠C,∠BAP=∠DPC,
∴△ABP∽△PCD;
(2)解:∵△ABP∽△PCD,
∴,
∵CD=,CP=BC﹣BP=x﹣1,BP=1,
即,
解得:AB=3.
即△ABC的边长为3
练习册系列答案
相关题目