题目内容
(2013•顺义区二模)若把代数式x2+5x+7化为(x-m)2+k的形式,其中m,k为常数,则k-m=
.
13 |
4 |
13 |
4 |
分析:根据配方法的步骤先把x2+5x+7化为(x-m)2+k的形式,求出m,k的值,再代入进行计算即可.
解答:解:∵x2+5x+7=x2+5x+
-
+7=(x+
)2+
,
∴m=-
,k=
,
∴k-m=
+
=
;
故答案为:
.
25 |
4 |
25 |
4 |
5 |
2 |
3 |
4 |
∴m=-
5 |
2 |
3 |
4 |
∴k-m=
3 |
4 |
5 |
2 |
13 |
4 |
故答案为:
13 |
4 |
点评:此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.
练习册系列答案
相关题目