题目内容
【题目】如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点E,则DF的长为( )
A. 4.5 B. 5 C. 5.5 D. 6
【答案】C
【解析】
根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.
解:∵AB=AC,AD是△ABC的中线,
∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,
∵AE是∠BAD的角平分线,
∴∠DAE=∠EAB=∠BAD=×60°=30°,
∵DF∥AB,
∴∠F=∠BAE=30°,
∴∠DAE=∠F=30°,
∴AD=DF,
∵∠B=90°-60°=30°,
∴AD=AB=×11=5.5,
∴DF=5.5.
故选:C.
练习册系列答案
相关题目