题目内容
为了美化校园环境,在学校广场用两种边长相等的正多边形地砖镶地面,现已有一种正方形,则另一种正多边形可以是
- A.正三角形
- B.正五边形
- C.正六角形
- D.正三角形或正八边形
D
分析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.
解答:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴正三角形可以;
正五边形每个内角是180°-360°÷5=108°,正方形的每个内角是90°,108m+90n=360°显然n取任何正整数时,m不能得正整数,故不能铺满;
正方形的每个内角是90°,正六边形的每个内角是120度.90m+120n=360°,m=4-43n,显然n取任何正整数时,m不能得正整数,故不能铺满;
正方形的每个内角是90°,正八边形的每个内角为:180°-360°÷8=135°,∵90°+2×135°=360°,∴正八边形可以.
故选D.
点评:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
分析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.
解答:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴正三角形可以;
正五边形每个内角是180°-360°÷5=108°,正方形的每个内角是90°,108m+90n=360°显然n取任何正整数时,m不能得正整数,故不能铺满;
正方形的每个内角是90°,正六边形的每个内角是120度.90m+120n=360°,m=4-43n,显然n取任何正整数时,m不能得正整数,故不能铺满;
正方形的每个内角是90°,正八边形的每个内角为:180°-360°÷8=135°,∵90°+2×135°=360°,∴正八边形可以.
故选D.
点评:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
练习册系列答案
相关题目