题目内容

已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.
(1)求抛物线的函数关系式;
(2)若过点C的直线y=kx+b与抛物线相交于点E (4,m),请求出△CBE的面积S的值;
(3)写出二次函数值大于一次函数值的x的取值范围;
(4)在抛物线上是否存在点P使得△ABP为等腰三角形?若存在,请指出一共有几个满足条件的点P,并求出其中一个点的坐标;若不存在这样的点P,请说明理由.

解:(1)∵A(1,0),B(5,0),
设抛物线y=ax2+bx+c=a(x-1)(x-5),
把C(0,5)代入得:5=a(0-1)(0-5),
解得:a=1,
∴y=(x-1)(x-5)=x2-6x+5,
答:抛物线的函数关系式是y=x2-6x+5.

(2)把x=4代入y=x2-6x+5得:y=-3,
∴E(4,-3),
把C(0,5),E(4,-3)代入y=kx+b得:
解得:k=-2,b=5,
∴y=-2x+5,
CE交X轴于D,
当y=0时,0=-2x+5,
∴x=
∴OD=
BD=5-=
∴△CBE的面积是:S△CBD+S△EBD=××5+××|-3|=10,
答:△CBE的面积S的值是10.

(3)由图象知:当x<0或x>4时,二次函数值大于一次函数值,
答:二次函数值大于一次函数值的x的取值范围是x<0或x>4.

(4)∵抛物线的顶点P(3,-4)既在抛物线的对称轴上又在抛物线上,
∴点P(3,-4)为所求满足条件的点.
除P点外,在抛物线上还存在其它的点P使得△ABP为等腰三角形.
理由如下:
∵AP=BP==2>4,
∴分别以A、B为圆心半径长为4画圆,分别与抛物线交于点B、P1、P2、P3、A、P4、P5、P6,除去B、A两个点外,其余6个点为满足条件的点.
分析:(1)设抛物线y=ax2+bx+c=a(x-1)(x-5),把C的坐标代入求出即可;
(2)求出E的坐标,把C(0,5),E(4,-3)代入y=kx+b得到方程组,求出方程组的解即可得到一次函数的解析式,求出直线与X轴的交点,根据三角形的面积公式求出即可;
(3)根据图象即可求出答案;
(4)求出抛物线的顶点坐标,根据线段的垂直平分线性质和等腰三角形的性质求出即可.
点评:本题主要考查对线段的垂直平分线性质,等腰三角形的性质,三角形的面积,一次函数、二次函数图象上点的坐标特征,用待定系数法求出二次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网