题目内容
如图,△ABC≌△CDA,∠BAC=85°,∠B=65°,则∠CAD度数为( )
A. 85° B. 65° C. 40° D. 30°
常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。过程为:
==
这种分解因式的方法叫分组分解法。利用这种方法解决下列问题:
(1)分解因式: ①;②2x﹣2y﹣x2+y2
(2)三边a,b,c 满足,判断的形状.
如图,△ABC 中,AC=6 ,∠A=45°,∠B=30°,P 是 BC 边上一点,将PC 绕着点 P 旋转得到 PC′,旋转角为α(0<α<180°),若旋转过程中,点 C′始终落在△ABC 内部(不包括边上),则 PC 的取值范围是( )
A. 0<PC<4 B. 4<PC<6 C. 0<PC<6 D. 0<PC<
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE=________cm.
如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC; 其中正确的结论是( )
A. ①② B. ①②③ C. ①③ D. ②③
关于x的方程2(x﹣3)﹣m=2的解和方程3x﹣7=2x的解相同.
(1)求m的值;
(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.
众所周知,中华诗词博大精深,集大量的情景、情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数反而少了20个字.根据题意可知七言绝句有____首.
如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图②.
(1)在图①中,过点P作PM∥AB,当α=20°,β=50°时,∠EPM= 度,∠EPF= 度;
(2)在(1)的条件下,求图②中∠END与∠CFI的度数;
(3)在图②中,当FI∥EH时,请直接写出α与β的数量关系.
若关于的一元二次方程有两个不相等的实数根,求的取值范围.