题目内容
对于反比例函数y=,当x=1时,y=-2,则此函数的表达式为( )
A. y=- B. y= C. y=- D. y=
如图,这是某同学用纸板做成的一个底面直径为10cm,高为12cm的无底圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板的面积是_____________cm2(结果保留).
如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是_____cm(计算结果保留π).
某学校要种植一块面积为100 m2的长方形草坪,要求两边长均不小于5 m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是( )
A. B. C. D.
已知y关于x的函数y=(5m-3)x2-n+(m+n).
(1)当m,n为何值时,函数是一次函数?
(2)当m,n为何值时,函数是正比例函数?
(3)当m,n为何值时,函数是反比例函数?
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y= (x>0)的图像经过点D,P是一次函数y=kx+3-3k(k≠0)的图像与该反比例函数图像的一个公共点.
(1)求反比例函数的表达式;
(2)通过计算说明一次函数y=kx+3-3k(k≠0)的图像一定经过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).
如图,函数与函数的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为
A.2 B.4 C.6 D.8
如图是小明设计的利用镜面反射来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端C,小明眼睛距离地面的高度AB=1.2米,那么该古城墙的高度是( )
A. 9.6米 B. 15米 C. 18米 D. 24米
如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线.已知AB=,那么DB=__________.