题目内容
【题目】如图,在ABCD中,E、F分别是AB、CD的中点.
(1)求证:四边形EBFD为平行四边形;
(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.
【答案】(1)证明见试题解析;(2)证明见试题解析.
【解析】
试题分析:(1)根据平行四边形的性质,得到AB∥CD,AB=CD;再根据一组对边平行且相等的四边形是平行四边形,可得答案;
(2)根据平行四边的性质,可得AB∥CD,AB=CD,∠CDM=∠CFN;根据全等三角形的判定,可得答案.
试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E、F分别是AB、CD的中点,∴BE=DF,∵BE∥DF,∴四边形EBFD为平行四边形;
(2)∵四边形EBFD为平行四边形,∴DE∥BF,∴∠CDM=∠CFN,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠ABN=∠CFN,∴∠ABN=∠CDM,在△ABN与△CDM中,∵∠BAN=∠DCM,AB=CD,∠ABN=∠CDM,∴△ABN≌△CDM (ASA).
练习册系列答案
相关题目