题目内容
如图,将矩形纸片ABCD折叠,使点A与BC边上的点A′重合,折痕为BE,再沿过点E的直线折叠,使点B与AD边上的点 B重合,折痕为EF,连结,.,则的值为________
如图,在△ABC中,AB=AC,∠B=40°,D为BC上一点,且AB=BD,则∠DAC的度数为( )
A. 20° B. 30° C. 40° D. 50°
先化简,再求,其中x=.
解分式方程+1=0,正确的结果是 ( )
A. x=0 B. x=1 C. x=2 D. 无解
为积极响应嘉兴市垃圾分类工作的号召,大力倡导低碳生活,保护我们的生存环境.某校按抽样规则抽取了部分学生进行垃圾分类的问卷调查(问卷内容如图1),答题情况如图2所示.
(1)参与本次问卷调查的学生共有多少人?
(2)若该校共有800名学生,则估计该校全体学生中对垃圾分类非常清楚(即“全对”)的人数有多少?
(3)为讲一步提高学生对垃圾分类的认识,学校加大了宣传,一个月后按同样的抽样规则抽取与第一次样本容量相等的学生进行第二次垃圾分类的问卷调查,答题情况如图3所示.求前后两次调查中答“全对”人数的增长率.
如图,在平面直角坐标系中,过点0的直线AB交反比例函数y=的图象于点A,B,点c在反比例函数y= (x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB= 时,k1,k2应满足的数量关系是( )
A. k2=2kl B. k2=-2k1 C. k2=4k1 D. k2=-4k1
估计的值应在( )
A. 5和6之问 B. 4和5之问 C. 3和4之间 D. 2和3之间
如图,在平面直角坐标系中,直线y=x- 与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是( )
A. 3 B. 12 C. 6 D.
某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.
(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?
(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?