题目内容
周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,张老师和8个学生跳舞…依次下去,一直到何老师,他和参加跳舞的所有学生跳过舞,这个晚会上参加跳舞的学生人数是
- A.15
- B.14
- C.13
- D.12
C
分析:可以设有x个老师,根据第一个老师和(6+1)个学生跳过舞;第二个老师和(6+2)个学生跳过舞,根据规律可知第x个是何老师和(6+x)个学生跳过舞,根据总人数是20人,即可得解.
解答:设参加跳舞的老师有x人,则第一个是方老师和(6+1)个学生跳过舞;第二是张老师和(6+2)个学生跳过舞;第三个是王老师和(6+3)个学生跳过舞,第x个是何老师和(6+x)个学生跳过舞,所以有x+(6+x)=20,
解得x=7,则参加跳舞的学生人数为20-7=13.
故选C.
点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
分析:可以设有x个老师,根据第一个老师和(6+1)个学生跳过舞;第二个老师和(6+2)个学生跳过舞,根据规律可知第x个是何老师和(6+x)个学生跳过舞,根据总人数是20人,即可得解.
解答:设参加跳舞的老师有x人,则第一个是方老师和(6+1)个学生跳过舞;第二是张老师和(6+2)个学生跳过舞;第三个是王老师和(6+3)个学生跳过舞,第x个是何老师和(6+x)个学生跳过舞,所以有x+(6+x)=20,
解得x=7,则参加跳舞的学生人数为20-7=13.
故选C.
点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
练习册系列答案
相关题目