题目内容
(2006•兰州)如图,在直角梯形ABCD中,AB⊥BC,AD=1,BC=3,CD=4,EF为梯形的中位线,DH为梯形的高,则下列结论:①∠BCD=60°;②四边形EHCF为菱形;③S△BEH=S△CEH;④以AB为直径的圆与CD相切于点F,其中正确结论的个数为( )A.4
B.3
C.2
D.1
【答案】分析:在直角三角形CDH中,CH=BC-BH,而四边形ABHD是矩形,故AD=BH,从而可求CH,利用三角函数可求∠DCH,即∠DCB的值;再利用梯形中位线定理,及F时CD中点,可证四边形EHCF是菱形;△BEH与△EHC时等高的两个三角形,求面积比,也就是求底边的比,即BH:CH;在△CDH中利用勾股定理,可求DH,即AB的值,用其一半与EF比较,相等则切于F,否则不成立.
解答:解:在Rt△DCH中,CD=4,CH=CB-BH=2,
∴∠DCH=60°,即∠BCD=60°,
在四边形EHCF中,又CH=EF=2,CH∥EF,CF=CD=2,
∴四边形EHCF是菱形,
∵S△BEH=BH•EB=×1×EB=EB,
S△CEH=CH•EB=×2×EB=EB,
∴S△BEH=S△CEH.
以AB的直径的圆的半径为,而EF=2,R≠EF.
所以AB为直径的圆与CD不相切于点F.
则①②③正确.故选B.
点评:此题主要考查梯形的性质、勾股定理、菱形的判定、三角形面积及圆的切线的判定.
解答:解:在Rt△DCH中,CD=4,CH=CB-BH=2,
∴∠DCH=60°,即∠BCD=60°,
在四边形EHCF中,又CH=EF=2,CH∥EF,CF=CD=2,
∴四边形EHCF是菱形,
∵S△BEH=BH•EB=×1×EB=EB,
S△CEH=CH•EB=×2×EB=EB,
∴S△BEH=S△CEH.
以AB的直径的圆的半径为,而EF=2,R≠EF.
所以AB为直径的圆与CD不相切于点F.
则①②③正确.故选B.
点评:此题主要考查梯形的性质、勾股定理、菱形的判定、三角形面积及圆的切线的判定.
练习册系列答案
相关题目