题目内容
【题目】如图,在中,,,的重直平分线交,于点,.
(1)求证:;
(2)当时,求的面积.
【答案】(1)证明见解析(2)
【解析】
(1)首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.(2) △ADE中,∠ADE=90°,∠A=30°,,推出AE=2,从而求出AC的长,再根据勾股定理求出BC的长,即可求出的面积.
如图,连接BE,
∵在△ABC中,∠C=90°,∠A=30°,
∴∠ABC=90°-∠A=60°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE.
(2)∵△ADE中,∠ADE=90°,∠A=30°,,∴AE=2,
∵,∴CE=1,AC=3,
设BC=x,则AB=2x,
∴
∴BC= ,
∴.
练习册系列答案
相关题目
【题目】甲、乙、丙三位运动员在相同条件下各射靶次,每次射靶的成绩如下:
甲:,,,,,,,,,
乙:,,,,,,,,,
丙:,,,,,,,,,
(1)根据以上数据完成下表:
平均数 | 中位数 | 方差 | |
甲 | __________ | ||
乙 | __________ | ||
丙 | __________ |
(2)根据表中数据分析,哪位运动员的成绩最稳定.并简要说明理由.