题目内容
(2008•哈尔滨)如图,在平面直角坐标系中,直线y=![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_ST/0.png)
(1)求点D的坐标;
(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;
(3)若以动点为E圆心,以
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_ST/images3.png)
【答案】分析:现根据直线y=
与x轴、y轴分别交于A、B两点,求出A、B两点的坐标,进而再求出OD的长度;然后根据需要作出恰当的辅助线,再结合题意对题目进行分析.
解答:
解:(1)由题意知A(
,0)B(0,
),
∴OA=
,OB=
,
∴AB=
=5,
∵OD⊥AB,
∴
OA•OB=
AB•OD,
∴OD=
=2.
过点D作DH⊥x轴于点H.(如图1)
∵∠BAO+∠ADH=∠ODH+∠ADH=90°,
∴∠ODH=∠BAO,
∴tan∠ODH=tan∠BAO=
,
∴DH=2OH.
设OH=a,则DH=2a.
∴a2+4a2=4,
∴a=
.
∴OH=
,DH=
.
∴D(-
,
);
(2)设DE与y轴交于点M.(如图2)
∵四边形DFB′G是平行四边形,
∴DF∥B′G,
∴∠1=∠A′.
又∵∠AOD+∠2=∠AOD+∠OAD=90°,
∴∠BAO=∠2.
∵∠BAO=∠A′,
∴∠1=∠2,
∴DM=OM.(1分)![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/images16.png)
∵∠3+∠1=90°,∠4+∠2=90°,
∴∠3=∠4,
∴BM=DM,
∴BM=OM,
∴点M是OB中点,
∴M(0,
).
设线段DE所在直线解析式为y=kx+b.
把M(0,
)D(
,
)代入y=kx+b,
得
,解得
.
∴线段DE所在直线的解析式为
;
(3)设直线A′B′交x轴于点N,(如图3)过点A′作A′K⊥x轴于点K.
∵∠AOD=∠A′OK,∠ADO=∠A′KO=90°,OA=OA′=
,
∴△AOD≌△A′OK,
∴OK=2,
∴A′K=4,
∴A′(-2,4).
过点B′作B′T⊥y轴于点T,同理△OBD≌△B′OT,
∴B′(2,1).
设直线A’B’的解析式为y=k1x+b1.
则
,解得
.
∴直线A′B′的解析式为
.
∴N(
,0),
∴KN=
,
∴A’N=
=
.
当E点在N点左侧点E1位置时,过点E1作E1Q1⊥A’N于点Q1.
∵tan∠A’NK=
=
,
∴设E1Q1=3m,则Q1N=4m.
又∵tan∠E1A’B’=
,
∴A’Q1=24m,
∴28m=
,
∴m=
,
∴E1N=
,
∴OE1=ON-E1N=
,此时t=
.
过点E1作E1S1⊥A’O于点S1.
∵sin∠E1OS1=sin∠A′OK,
∴
,
∴E1S1=
.![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/images42.png)
∵⊙E的半径为
,而
,
∴⊙E1与直线A’O相交.
当E点在N点右侧点E2位置时,
过点E2作E2Q2⊥A′N于点Q2.
同理OE2=5,此时t=5.
过点E2作E2S2⊥A′O于点S2.
同理E2S2=
=
.
∵⊙E的半径为
,
∴⊙E2与直线A′O相切.
∴当t=
或t=5时,tan∠EA′B′=
;
当t=
时直线A′O与⊙E相交,当t=5时直线A′O与⊙E相切.
点评:解决较复杂的几何问题,作出合适的辅助线是解决问题的一个关键,同时要熟记一些定理或推论.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/0.png)
解答:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/images1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/2.png)
∴OA=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/4.png)
∴AB=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/5.png)
∵OD⊥AB,
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/7.png)
∴OD=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/8.png)
过点D作DH⊥x轴于点H.(如图1)
∵∠BAO+∠ADH=∠ODH+∠ADH=90°,
∴∠ODH=∠BAO,
∴tan∠ODH=tan∠BAO=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/9.png)
∴DH=2OH.
设OH=a,则DH=2a.
∴a2+4a2=4,
∴a=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/10.png)
∴OH=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/12.png)
∴D(-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/14.png)
(2)设DE与y轴交于点M.(如图2)
∵四边形DFB′G是平行四边形,
∴DF∥B′G,
∴∠1=∠A′.
又∵∠AOD+∠2=∠AOD+∠OAD=90°,
∴∠BAO=∠2.
∵∠BAO=∠A′,
∴∠1=∠2,
∴DM=OM.(1分)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/images16.png)
∵∠3+∠1=90°,∠4+∠2=90°,
∴∠3=∠4,
∴BM=DM,
∴BM=OM,
∴点M是OB中点,
∴M(0,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/15.png)
设线段DE所在直线解析式为y=kx+b.
把M(0,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/18.png)
得
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/20.png)
∴线段DE所在直线的解析式为
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/21.png)
(3)设直线A′B′交x轴于点N,(如图3)过点A′作A′K⊥x轴于点K.
∵∠AOD=∠A′OK,∠ADO=∠A′KO=90°,OA=OA′=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/22.png)
∴△AOD≌△A′OK,
∴OK=2,
∴A′K=4,
∴A′(-2,4).
过点B′作B′T⊥y轴于点T,同理△OBD≌△B′OT,
∴B′(2,1).
设直线A’B’的解析式为y=k1x+b1.
则
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/24.png)
∴直线A′B′的解析式为
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/25.png)
∴N(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/26.png)
∴KN=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/27.png)
∴A’N=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/29.png)
当E点在N点左侧点E1位置时,过点E1作E1Q1⊥A’N于点Q1.
∵tan∠A’NK=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/31.png)
∴设E1Q1=3m,则Q1N=4m.
又∵tan∠E1A’B’=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/32.png)
∴A’Q1=24m,
∴28m=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/33.png)
∴m=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/34.png)
∴E1N=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/35.png)
∴OE1=ON-E1N=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/37.png)
过点E1作E1S1⊥A’O于点S1.
∵sin∠E1OS1=sin∠A′OK,
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/38.png)
∴E1S1=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/39.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/images42.png)
∵⊙E的半径为
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/40.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/41.png)
∴⊙E1与直线A’O相交.
当E点在N点右侧点E2位置时,
过点E2作E2Q2⊥A′N于点Q2.
同理OE2=5,此时t=5.
过点E2作E2S2⊥A′O于点S2.
同理E2S2=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/42.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/43.png)
∵⊙E的半径为
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/44.png)
∴⊙E2与直线A′O相切.
∴当t=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/45.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/46.png)
当t=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231528627974073/SYS201310212315286279740024_DA/47.png)
点评:解决较复杂的几何问题,作出合适的辅助线是解决问题的一个关键,同时要熟记一些定理或推论.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目