题目内容

观察本题的三个图形,思考下列问题
(1)如图1,正方形ABCD中,点M是CD上异于端点的任意一点,过点C作CN⊥BM于O,且交AD于N点.求证:BM=CN;
(2)如图2,等边△ABC中,点M是CA上异于端点的任意一点,过点C作射线CN交AB于点N、交BM于点O,且使∠BOC=120°.
请你判断此时BM与CN的大小关系,并证明你的结论.
(3)如图3,正n边形ABCDE…An中,点M是CD上异于端点的任意一点,过点C作射线CN交DE于点N、交BM于点O,且使BM=CN.设此时∠BOC的大小为y,请你写出y与n之间的函数关系式.

解:(1)∵正方形ABCD,CN⊥BM,
∴CD=BC,∠MBC=∠NCD,
∴△BCM≌△CDN,
∴BM=CN;

(2)∵等边△ABC,
∴AC=BC,∠A=∠ACB=60°,
∵∠BOC=120°,
∴∠ACN=∠CBM,
∴△BCM≌△CAN,
∴BM=CN;

(3)∵正n边形ABCDE…An中,
∴∠BCM=∠CDN,
∵BM=CN,BC=CD,
∴△BCM≌△CDN,
∴∠OCD=∠CBO,
∴∠BOC=180°-∠CBO-∠BCO=180°-∠BCD,
∴∠BOC=180°-
∴y=
分析:(1)根据题意,推出△BCM≌△CDN,即可;
(2)BM=CN,根据题意推出∠A=∠BCM=60°,∠ACN=∠CBM,可得△BCM≌△CAN,即可推出结论;
(3)根据题意推出△BCM≌△CDN,即得∠OCD=∠CBO,由∠BOC=180°-∠CBO-∠BCO=180°-∠BCD,即可推出y=
点评:本题主要考查全等三角形的判定和性质、等边三角形的性质、正多边形的性质、关键在于求证相关三角形全等.
练习册系列答案
相关题目
现有如图1的8张大小形状相同的直角三角形纸片,三边长分别是a、b、c.用其中4张纸片拼成如图2的大正方形(空白部分是边长分别为a和b的正方形);用另外4张纸片拼成如图3的大正方形(中间的空白部分是边长为c的正方形).

(一)观察:
从整体看,图2和图3的大正方形的面积都可以表示为(a+b)2,结论①依据整个图形的面积等于各部分面积的和.
图2中的大正方形的面积又可以用含字母a、b的代数式表示为:
a2+b2+2ab
a2+b2+2ab
,结论②
图3中的大正方形的面积又可以用含字母a、b、c的代数式表示为:
c2+2ab
c2+2ab
,结论③
(二)思考:
结合结论①和结论②,可以得到一个等式
(a+b)2=a2+b2+2ab
(a+b)2=a2+b2+2ab

结合结论②和结论③,可以得到一个等式
a2+b2=c2
a2+b2=c2

(三)应用:
请你运用(二)中得到的结论任意选择下列两个问题中的一个解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分别以直角三角形三边为直径,向外作半圆(如图4),三个半圆的面积分别记作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本题作为附加题,做对加2分)
若分别以直角三角形三边为直径,向上作三个半圆(如图5),直角边a=5,b=12,斜边c=13,则表示图中阴影部分面积和的数值是:
A
A
  A.有理数     B.无理数     C.无法判断
请作出选择,并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网