题目内容
【题目】已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时,请直接写出线段BD与CF的数量关系: ;
(2)如图2,当点D在线段BC的延长线上时,其它条件不变,若AC=2,CD=1,则CF= ;
(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:
①请直接写出CF、BC、CD三条线段之间的关系: ;
②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.
【答案】(1)BD=CF;(2);(3)①CD=CF+BC,②等腰三角形,见解析
【解析】
(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF;
(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF=CD+BC,然后求出答案;
(3)中的①与(1)相同,可证明BD=CF,又点D、B、C共线,故:CD=BC+CF;
②由(1)猜想并证明BD⊥CF,从而可知△FCD为直角三角形,再由正方形的对角线的性质判定△AOC三边的特点,再进一步判定其形状.
解:(1)证明:∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
,
∴△BAD≌△CAF(SAS),
∴BD=CF,
(2)与(1)同理,证△BAD≌△CAF;
∴BD=CF,
∴CF=BC+CD,
∵AC=AB=2,CD=1,
∴,
∴CF=;
(3)①BC、CD与CF的关系:CD=BC+CF
理由:与(1)同法可证△BAD≌△CAF,从而可得:
BD=CF,
即:CD=BC+CF
②△AOC是等腰三角形
理由:与(1)同法可证△BAD≌△CAF,可得:∠DBA=∠FCA,
又∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
则∠ABD=180°-45°=135°,
∴∠ABD=∠FCA=135°
∴∠DCF=135°-45°=90°
∴△FCD为直角三角形.
又∵四边形ADEF是正方形,对角线AE与DF相交于点O,
∴OC=DF,
∴OC=OA
∴△AOC是等腰三角形.