题目内容
【题目】如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CD交AB的延长线于点D,且BD=OB,CD=CA.
(1)求证:CD是⊙O的切线.
(2)如图(2),过点C作CE⊥AB于点E,若⊙O的半径为8,∠A=30°,求线段BE.
【答案】(1)见解析;(2)4.
【解析】
(1)如图1,连结OC,根据直角三角形斜边中点的性质得出OC=OA=OB,进一步得出点C在⊙O上,由等边对等角得出∠A=∠D,然后通过证得△ACB≌△DCO,得出∠DCO=∠ACB=90°,即可证得CD是⊙O的切线;
(2)解直角三角函数即可求得.
(1)证明:如图1,连结OC,
∵点O为直角三角形斜边AB的中点,
∴OC=OA=OB.
∴点C在⊙O上,
∵BD=OB,
∴AB=DO,
∵CD=CA,
∴∠A=∠D,
∴△ACB≌△DCO,
∴∠DCO=∠ACB=90°,
∴CD是⊙O的切线;
(2)如图2,
在Rt△ABC中,BC=ABsin∠A=2×8×sin30°=8,
∵∠ABC=90°-∠A=90°-30°=60°,
∴BE=BCcos60°=8×=4.
练习册系列答案
相关题目