题目内容

【题目】如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CDAB的延长线于点D,且BD=OBCD=CA

1)求证:CD是⊙O的切线.

2)如图(2),过点CCEAB于点E,若⊙O的半径为8,∠A=30°,求线段BE

【答案】(1)见解析;(2)4.

【解析】

(1)如图1,连结OC,根据直角三角形斜边中点的性质得出OC=OA=OB,进一步得出点C在⊙O上,由等边对等角得出∠A=∠D,然后通过证得△ACB≌△DCO,得出∠DCO=∠ACB=90°,即可证得CD是⊙O的切线;
(2)解直角三角函数即可求得.

(1)证明:如图1,连结OC,

∵点O为直角三角形斜边AB的中点,

OC=OA=OB.

∴点C在⊙O上,

BD=OB,

AB=DO,

CD=CA,

∴∠A=D,

∴△ACB≌△DCO,

∴∠DCO=ACB=90°,

CD是⊙O的切线;

(2)如图2,

RtABC中,BC=ABsinA=2×8×sin30°=8,

∵∠ABC=90°-A=90°-30°=60°,

BE=BCcos60°=8×=4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网