题目内容
图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.
已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=( )
A. a+b B. a﹣2b C. a﹣b D. 3a
已知三角形三边长分别为a、b、c,其中a、b满足(a﹣6)2+|b﹣8|=0,求这个三角形最长边c的取值范围.
如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )
A. 两点之间线段最短 B. 三角形的稳定性 C. 两点确定一条直线 D. 垂线段最短
如图,在矩形ABCD中,P是AD上一动点,O为BD的中点,连接PO并延长,交BC于点Q.
(1) 求证:四边形PBQD是平行四边形
(2) 若AD=6cm,AB=4cm, 点P从点A出发,以1cm/s的速度向点D运动(不与点D重合),设点P运动时间为t s , 请用含t的代数式表示PD的长,并求出当t为何值时,四边形PBQD是菱形。并求出此时菱形的周长。
小明从右边的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0,②c=0,③函数的最小值为-3,④当x<0时,y>0,⑤当0<x1<x2<2时,y1>y2 , (6)对称轴是直线x=2.你认为其中正确的个数为( )
A. 2 B. 3 C. 4 D. 5
不等式组解集在数轴上表示正确的是( )
A. B. C. D.
为了测量校园水平地面上一棵不可攀爬的树的高度,小文同学做了如下的探索:根据物理学中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在合适的位置,刚好能在镜子里看到树梢顶点,此时小文与平面镜的水平距离为2.0米,树的底部与平面镜的水平距离为8.0米,若小文的眼睛与地面的距离为1.6米,则树的高度约为______米(注:反射角等于入射角).
已知:方程组有两组不同的实数解,.
(1)求实数k的取值范围.
(2)是否存在实数k,使?若存在,请求出所有符合条件的k的值;若不存在,请说明理由.