题目内容
如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于( )
A. 2 B. 3 C. 4 D. 6
已知:中,,,则等于( )
A. B. C. D.
已知是二元一次方程组的解,则m+3n的立方根为__.
如图,己知抛物线经过点A(l, 0),B(一3,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)在x轴下方的抛物线上,是否存在点M,使得?若存在求出M点的坐标;若不存在,请说明理由;
(3)点P是位于直线BC上方的抛物线上的一个动点,是否存在点P,使的面积最大?若存在,求出P的坐标及的最大值:若不存在,说明理由.
“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为________.
多项式4a﹣a3分解因式的结果是( )
A. a(4﹣a2) B. a(2﹣a)(2+a) C. a(a﹣2)(a+2) D. a(2﹣a)2
若(x﹣1)0=1成立,则x的取值范围是( )
A. x=﹣1 B. x=1 C. x≠0 D. x≠1
P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”
(1)⊙O的半径为6,OP=4.
①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;
②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;
(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;
(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.
如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是( )
A.51° B.56° C.68° D.78°