题目内容
分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.
解答:解:∵四边形ABCD是平行四边形,
∴AC、BD互相平分,
∴O是BD的中点.
又∵OE⊥BD,
∴OE为线段BD的中垂线,
∴BE=DE.
又∵△ABE的周长=AB+AE+BE,
∴△ABE的周长=AB+AE+DE=AB+AD.
又∵□ABCD 的周长为20cm,
∴AB+AD=10cm
∴△ABE的周长=10cm.
∴AC、BD互相平分,
∴O是BD的中点.
又∵OE⊥BD,
∴OE为线段BD的中垂线,
∴BE=DE.
又∵△ABE的周长=AB+AE+BE,
∴△ABE的周长=AB+AE+DE=AB+AD.
又∵□ABCD 的周长为20cm,
∴AB+AD=10cm
∴△ABE的周长=10cm.
点评:本题考查了平行四边形的性质.平行四边形的对角线互相平分.
练习册系列答案
相关题目