题目内容

如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.

(1)圆周上数字a与数轴上的数5对应,则a=
2
2

(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是
3n+1
3n+1
 (用含n的代数式表示).
分析:先找出正半轴上的整数与圆周上的数字建立的对应关系,找出规律进行解答即可.
解答:解:(1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,
∴圆周上数字a与数轴上的数5对应时a=2;

(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,
∴圆周上了数字0、1、2与正半轴上的整数每3个一组0、1、2,3、4、5,6、7、8,…分别对应,
∴数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是3n+1.
故答案为:a=2;3n+1.
点评:本题考查的是数轴的特点,先根据题意找出规律是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网