题目内容
【题目】如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且=.
(1)求证:CD是⊙O的切线;
(2)若tan∠CAB=,BC=3,求DE的长.
【答案】(1)见解析;(2).
【解析】
试题分析:(1)连接OC,由=,根据圆周角定理得∠1=∠2,而∠1=∠OCA,则∠2=∠OCA,则可判断OC∥AD,由于AD⊥CD,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;
(2)连接BE交OC于F,由AB是⊙O的直径得∠ACB=90°,在Rt△ACB中,根据正切的定义得AC=4,再利用勾股定理计算出AB=5,然后证明Rt△ABC∽Rt△ACD,利用相似比先计算出AD=,再计算出CD=;根据垂径定理的推论由=得OC⊥BE,BF=EF,于是可判断四边形DEFC为矩形,所以EF=CD=,则BE=2EF=,然后在Rt△ABE中,利用勾股定理计算出AE=,再利用DE=AD﹣AE求解.
(1)证明:连接OC,如图,
∵=,
∴∠1=∠2,
∵OC=OA,
∴∠1=∠OCA,
∴∠2=∠OCA,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)解:连接BE交OC于F,如图,
∵AB是⊙O的直径,
∴∠ACB=90°,
在Rt△ACB中,tan∠CAB==,
而BC=3,
∴AC=4,
∴AB==5,
∵∠1=∠2,
∴Rt△ABC∽Rt△ACD,
∴=,即=,解得AD=,
∵=,即=,解得CD=,
∵=,
∴OC⊥BE,BF=EF,
∴四边形DEFC为矩形,
∴EF=CD=,
∴BE=2EF=,
∵AB为直径,
∴∠BEA=90°,
在Rt△ABE中,
AE===,
∴DE=AD﹣AE=﹣=.
练习册系列答案
相关题目