题目内容

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B(2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.

(1)求此抛物线对应的函数表达式及点C的坐标;
(2)若抛物线上存在点M,使得△BCM的面积为 ,求出点M的坐标;
(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.

【答案】
(1)

解:把A(﹣1,1),B(2,2)代入y=ax2+bx得: ,解得

故抛物线的函数表达式为y= x2 x,

∵BC∥x轴,

设C(x0,2).

x02 x0=2,解得:x0=﹣ 或x0=2,

∵x0<0,

∴C(﹣ ,2)


(2)

解:设△BCM边BC上的高为h,

∵BC=

∴SBCM= h=

∴h=2,点M即为抛物线上到BC的距离为2的点,

∴M的纵坐标为0或4,令y= x2 x=0,

解得:x1=0,x2=

∴M1(0,0),M2 ,0),令y= x2 x=4,

解得:x3= ,x4=

,∴M3 ,0),M4 ,4),

综上所述:M点的坐标为:(0,0),( ,0),( ,0),( ,4)


(3)

解:∵A(﹣1,1),B(2,2),C(﹣ ,2),D(0,2),

∴OB=2 ,OA= ,OC=

∴∠AOD=∠BOD=45°,tan∠COD=

①如图1,

当△AOC∽△BON时, ,∠AOC=∠BON,

∴ON=2OC=5,

过N作NE⊥x轴于E,

∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,

在Rt△NOE中,tan∠NOE=tan∠COD=

∴OE=4,NE=3,

∴N(4,3)同理可得N(3,4);

②如图2,

当△AOC∽△OBN时, ,∠AOC=∠OBN,

∴BN=2OC=5,

过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,

∴NF⊥BF,

∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,

∴tan∠NBF=tan∠COD=

∴BF=4,NF=3,

∴N(﹣1,﹣2),同理N(﹣2,﹣1),

综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).


【解析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y= x2 x,由于BC∥x轴,设C(x0 , 2).于是得到方程 x02 x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y= x2 x=0,或令y= x2 x=4,解方程即可得到结论;(3)解直角三角形得到OB=2 ,OA= ,OC= ,∠AOD=∠BOD=45°,tan∠COD= ①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.
【考点精析】本题主要考查了二次函数的性质和相似三角形的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;对应角相等,对应边成比例的两个三角形叫做相似三角形才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网