题目内容

【题目】已知:如图1,在面积为3的正方形ABCD中,E,F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.

(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.

【答案】
(1)证明:∵四边形ABCD是正方形,

∴∠ABE=∠BCF=90°,AB=BC,

∴∠ABF+∠CBF=90°,

∵AE⊥BF,

∴∠ABF+∠BAE=90°,

∴∠BAE=∠CBF,

在△ABE和△BCF中,

∴△ABE≌△BCF


(2)解:∵正方形面积为3,

∴AB=

在△BGE与△ABE中,

∵∠GBE=∠BAE,∠EGB=∠EBA=90°,

∴△BGE∽△ABE,

又∵BE=1,

∴AE2=AB2+BE2=3+1=4,

∴SBGE= ×SABE= =


(3)解:没有变化.

理由:∵AB= ,BE=1,

∴tan∠BAE= = ,∠BAE=30°,

∵AB′=AB=AD,∠AB′E′=∠ADE′=90°,AE′公共,

∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,

∴∠DAE′=∠B′AE′=∠BAE=30°,

∴AB′与AE在同一直线上,即BF与AB′的交点是G,

设BF与AE′的交点为H,

则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,

∴△BAG≌△HAG(ASA),

∴S四边形GHE′B′=SAB′E′﹣SAGH=SABE﹣SABG=SBGE

∴△ABE在旋转前后与△BCF重叠部分的面积没有变化.


【解析】(1)利用正方形的性质和互为余角的性质可证出全等;(2)利用相似三角形的性质,面积比等于相似比的平方可求出;(3)可借鉴(2)的思路方法构造出原来的三角形,通过转化S四边形GHE′B′=SAB′E′﹣SAGH=SABE﹣SABG=SBGE,没有发生变化.
【考点精析】关于本题考查的正方形的性质和相似三角形的判定与性质,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网