题目内容
已知第一个正方体纸盒的棱长是6厘米,第二个正方体纸盒的体积比第一个正方体纸盒的体积大127立方厘米,试求第二个正方体纸盒的棱长.
.在Rt△ABC中,∠ACB=90°,tan∠BAC=. 点D在边AC上(不与A,C重合),连结BD,F为BD中点.
(1)若过点D作DE⊥AB于E,连结CF、EF、CE,如图1. 设,则k =" " ;
(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF;
(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.
在100个数据中,用适当的方法,抽取50个作为样本进行统计,频数分布表中55~58这一组数据的频率是0.12,那么估计这100个数据中,落在55~58之间的约有( )
A. 120个 B. 60个 C. 12个 D. 6个
电影票上“6排3号”,记作(6,3),则9排7号记作__________ .
下列调查中,适宜采用全面调查(普查)方式的是( )
A.调查市场上老酸奶的质量情况 B.调查某品牌圆珠笔芯的使用寿命
C.调查乘坐飞机的旅客是否携带了危禁物品 D.调查我市市民对伦敦奥运会吉祥物的知晓率
一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为__.
若一个数的平方根是±8,则这个数的立方根是( ).
A. 2 B. ±2 C. 4 D. ±4
某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=( )
A. (2,-3) B. (-2,3) C. (2,3) D. (-2,-3)