题目内容
如图,矩形OABC中,OA=2,AB=1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则此点表示的实数是( )
A. 2.5 B. C. D.
2018的相反数是( )
A. 2018 B. C. ﹣ D. ﹣2018
如图,AB是⊙O的弦,OC⊥AB,∠AOC=42°,那么∠CDB的度数为_____.
为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.Okm,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?
己知三角形三边长分别为,,,则此三角形的最大边上的高等于_____________.
下列二次根式中,最简二次根式是( )
A. B. C. D.
如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同 .
定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(点P与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.
(1)直接写出抛物线y=–x2+1的勾股点的坐标;
(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式;
(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.
因式分【解析】9a3b﹣ab=_____.