题目内容
下列各曲线中表示y是x的函数的是( )
A. B. C. D.
超速行驶是造成交通事故的主要原因之一.如图,一条公路建成通车,在某直线路段限速60千米/时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45o,∠CBN=60o,BC=200米,请判断此车是否超速并说明理由.(精确到十分位,参考数据:)
估计的值在( )
A. 2到3之间 B. 3到4之间 C. 4到5之间 D. 5到6之间
已知一次函数y=kx+2k+3的图像与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为____________.
同一直一次函数y1=k1x+b与正比例函数y2=k2x的图象如图,则满足y1≥y2的x取值范围是( )
A. x≤﹣2 B. x≥﹣2 C. x<﹣2 D. x>﹣2
随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率;
(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k=______.
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
若有意义,则x满足的条件是______________.