题目内容
【题目】如图,点P是的角平分线OC上一点,PNOB于点N,点M是线段ON上一点,已知OM=3,ON=4,点D为OA上一点,若满足PD=PM,则OD的长度为________
【答案】3或5
【解析】
过点P作PE⊥OA于点E,分点D在线段OE上,点D在射线EA上两种情况讨论,利用角平分线的性质可得PN=PE,即可求OE=ON=4,由题意可证△PMN≌△PDE,可求OD的长.
如图:过点P作PE⊥OA于点E
∵OC平分∠AOB,PE⊥OA,PN⊥OB
∴PE=PN
∵PE=PN,OP=OP
∴△OPE≌△OPN(HL)
∴OE=ON=4
∵OM=3,ON=4
∴MN=1
若点D在线段OE上,
∵PM=PD,PE=PN
∴△PMN≌△PDE(HL)
∴DE=MN=1
∴OD=OE-DE=3
若点D在射线EA上,
∵PM=PD,PE=PN
∴△PMN≌△PDE(HL)
∴DE=MN=1
∴OD=OE+DE=5
故答案为3或5.
练习册系列答案
相关题目
【题目】甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:
平均成绩(环) | 中位数(环) | 众数(环) | 方差 | |
甲 | 8 | b | 8 | s2 |
乙 | a | 7 | c | 0.6 |
(1)补充表格中a,b,c的值,并求甲的方差s2;
(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?