题目内容

【题目】(本题满分10分)如图,已知AB是O的直径,点C在O上,过点C的直线与AB的延长线交于点P,AC=PC,COB=2PCB.

(1)求证:PC是O的切线;

(2)求证:BC=AB;

(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.

【答案】

1PC是O的切线,证明略。

2BC=AB,证明略。

(3)MC·MN=BM2=8

【解析】(本题满分10分)

解:(1)OA=OC,∴∠A=ACO

∵∠COB=2A ,COB=2PCB

∴∠A=ACO=PCB ……………………………………………………1分

AB是O的直径

∴∠ACO+OCB=90° …………………………………………………2分

∴∠PCB+OCB=90°,即OCCP …………………………………………3分

OC是O的半径

PC是O的切线 …………………………………………………4分

(2)PC=AC ∴∠A=P

∴∠A=ACO=PCB=P

∵∠COB=A+ACO,CBO=P+PCB

∴∠CBO=COB ……………………………………………5分

BC=OC

BC=AB ………………………………………………………6分

(3)连接MA,MB

点M是弧AB的中点

弧AM=弧BM ∴∠ACM=BCM ………7分

∵∠ACM=ABM ∴∠BCM=ABM

∵∠BMC=BMN

∴△MBN∽△MCB

BM2=MC·MN ……………………8分

AB是O的直径,弧AM=弧BM

∴∠AMB=90°,AM=BM

AB=4 BM= ………………………………………………………9分

MC·MN=BM2=8 ……………………………………………………10分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网