题目内容

已知:直线y=kx(k≠0)经过点(3,-4).
(1)求k的值;
(2)将该直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相离(点O为坐标原点),试求m的取值范围.

(1)依题意得:-4=3k,
∴k=-
4
3
.(3分)

(2)由(1)及题意知,设平移后得到的直线l所对应的函数关系式为y=-
4
3
x+m(m>0).(4分)
设直线l与x轴、y轴分别交于点A、B,如右图所示
当x=0时,y=m;当y=0时,x=
3
4
m.
∴A(
3
4
m,0),B(0,m),即OA=
3
4
m,OB=m.
在Rt△OAB中,AB=
OA2+OB2
2=
9
16
m2+m2
=
5
4
m
.(5分)
过点O作OD⊥AB于D,
∵S△ABO=
1
2
OD•AB=
1
2
OA•OB,
1
2
ODו
5
4
m
=
1
2
ו
3
4
m•m,
∵m>0,解得OD=
3
5
m(6分)
∵直线与半径为6的⊙O相离,
3
5
m>6,解得m>10.
即m的取值范围为m>10.(8分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网