题目内容
【题目】夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:
(1)求甲、乙两种空调每台的进价;
(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大
利润.
【答案】(1)甲种空调每台2000元,乙种空调每台1500元;
(2)所获利润y(元)与甲种空调x(台)之间的函数关系式是y=200x+6000,所获的最大利润是8400元.
【解析】试题分析:(1)根据题意可以列出相应的方程,从而可以分别求得甲、乙两种空调每台的进价,注意分式方程要检验;(2)根据题意和(1)中的答案可以得到所获利润y(元)与甲种空调x(台)之间的函数关系式,然后根据商场计划用不超过36000元购进空调共20台,可以求得x的取值范围,从而可以求得所能获得的最大利润.
试题解析:(1)设乙种空调每台进价为x元,
,
解得,x=1500
经检验x=1500是原分式方程的解,
∴x+500=2000,
答:甲种空调每台2000元,乙种空调每台1500元;
(2)由题意可得,
所获利润y(元)与甲种空调x(台)之间的函数关系式是:
y=(2500-2000)x+(1800-1500)(20-x)=200x+6000,
∵2000x+1500(20-x)≤36000,
解得,x≤12,
∴当x=12时,y取得最大值,此时y=200x+6000=8400,
答:所获利润y(元)与甲种空调x(台)之间的函数关系式是y=200x+6000,所获的最大利润是8400元.