题目内容
已知等边三角形的内切圆半径,外接圆半径和高的比是( )
A. 1:2: B. 2:3:4 C. 1::2 D. 1:2:3
如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
A. 35° B. 40° C. 50° D. 65°
将一次函数的图象向下平移3个单位长度,相应的函数表达式为______.
某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.
(1)求购进甲、乙两种花卉,每盆各需多少元?
(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;
(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?
在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为_____.
下列运算,正确的是( )
A. 4a﹣2a=2 B. a6÷a3=a2 C. ()﹣1﹣22=﹣2 D. (a﹣b)2=a2﹣b2
如图 ,在平面直角坐标系中 ,已知二次函数y=ax2+bx+c (a≠0)
的图象经过 A(-1,0),B(3,0),C(6,4)三点.
(1)求此二次函数解析式和顶点 D 的坐标;
(2)①E为抛物线对称轴上一点,过点E作FG//x 轴,分别交抛物线于F、G两点 ,若,求点E的坐标;
② 若抛物线对称轴上点 H 到直线 BC 的距离等于点 H 到 x 轴的距离,则求出点 H
的坐标;
(3)在(2)的条件下,以点I(1,)为圆心,IH 的长为半径作⊙I,J 为⊙I上的动点,求是否存在一个定值,使得 CJ+•EJ 的最小值是若不存在,请说明理由.若存在,请求出的值;
如图,有一个边长为2cm 的正六边形纸片,若在该纸片上剪一个最大圆形,则这个圆形纸片的直径是 ( ) .
A. cm B. 2cm C. 2cm D. 4cm
解方程组: