题目内容
【题目】如图,是等边的外角内部的一条射线,点关于的对称点为,连接,,,其中、分别交射线于点,.
(1)依题意补全图形;
(2)若,求的大小(用含的式子表示);
(3)若,,求的长度(用,的代数式表示).
【答案】(1)答案见解析;(2)60°-;(3)PB=x+2y.
【解析】
(1)根据题目要求正确画图即可;
(2)根据对称得CN是AD的垂直平分线,则CA=CD,根据等腰三角形的性质和等边三角形的性质可得结论;
(3)作辅助线,在PB上截取PF使PF=PC,连接CF,先证明△CPF是等边三角形,再证明△BFC≌△DPC,则BF=PD=2PE,然后根据PB=PF+BF可得结论.
解:(1)如图:
(2)∵点A与点D关于CN对称,
∴CN是AD的垂直平分线,
∴CA=CD,
∵,
∴∠ACD=2,
∵CA=CB=CD,∠ACB=60°,
∴∠BCD=∠ACB+∠ACD=60°+2α.
∴∠BDC=∠DBC=(180°-∠BCD)=60°-α;
(3)在PB上截取PF使PF=PC,连接CF,
设,
∵CA=CD,∠ACD=2α,
∴∠CDA=∠CAD=90°-α,
∵∠BDC=60°-α,
∴∠PDE=∠CDA-∠BDC=30°,
∴PD=2PE,
∵∠CPF=∠DPE=90°-∠PDE=60°,
∴△CPF是等边三角形,
∴∠CPF=∠CFP=60°,
∴∠BFC=∠DPC=120°,
∴在△BFC和△DPC中,
,
∴△BFC≌△DPC,
∴BF=PD=2PE,
∴PB=PF+BF=PC+2PE=x+2y.
【题目】二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为( )
A. 8 B. ﹣10 C. ﹣42 D. ﹣24
【题目】某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:
(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;
(2)求出图中a的值;
(3)下表是该小学的作息时间,若同学们希望在上午第一节下课8:20时能喝到不超过40℃的开水,已知第一节下课前无人接水,请直接写出生活委员应该在什么时间或时间段接通饮水机电源.(不可以用上课时间接通饮水机电源)
时间 | 节次 | |
上 午 | 7:20 | 到校 |
7:45~8:20 | 第一节 | |
8:30~9:05 | 第二节 | |
… | … |