题目内容
已知抛物线y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=-1,求该抛物线与x轴公共点的坐标;
(Ⅱ)若a=b=1,且当-1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围;
(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
答案:
解析:
解析:
解:(Ⅰ)当,时,抛物线为, 方程的两个根为,. ∴该抛物线与轴公共点的坐标是和. 2分 (Ⅱ)当时,抛物线为,且与轴有公共点. 对于方程,判别式≥0,有≤.3分 ①当时,由方程,解得. 此时抛物线为与轴只有一个公共点. 4分 ②当时, 时,, 时,. 由已知时,该抛物线与轴有且只有一个公共点,考虑其对称轴为, 应有 即 解得. 综上,或. 6分 (Ⅲ)对于二次函数, 由已知时,;时,, 又,∴. 于是.而,∴,即. ∴. 7分 ∵关于的一元二次方程的判别式 , ∴抛物线与轴有两个公共点,顶点在轴下方. 8分 又该抛物线的对称轴, 由,,, 得, ∴. 又由已知时,;时,,观察图象, 可知在范围内,该抛物线与轴有两个公共点. 10分 |
练习册系列答案
相关题目