题目内容
【题目】我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
【答案】见解析
【解析】
试题分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.
(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.
(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.
解:(1)设今年5月份A款汽车每辆售价x万元.根据题意得:
=,
解得:x=9,
经检验知,x=9是原方程的解.
所以今年5月份A款汽车每辆售价9万元.
(2)设A款汽车购进y辆.则B款汽车每辆购进(15﹣y)辆.根据题意得:
解得:6≤y≤10,
所以有5种方案:
方案一:A款汽车购进6辆;B款汽车购进9辆;
方案二:A款汽车购进7辆;B款汽车购进8辆;
方案三:A款汽车购进8辆;B款汽车购进7辆;
方案四:A款汽车购进9辆;B款汽车购进6辆;
方案五:A款汽车购进10辆;B款汽车购进5辆.
(3)设利润为W则:W=(8﹣6)×(15﹣y)﹣a(15﹣y)+(9﹣7.5)y
=30﹣2y﹣a(15﹣y)+1.5y
=30﹣a(15﹣y)﹣0.5y
方案一:W=30﹣a(15﹣6)﹣0.5×6=30﹣9a﹣3=27﹣9a
方案二:W=30﹣a(15﹣7)﹣0.5×7=30﹣8a﹣3.5=26.5﹣8a
方案三:W=30﹣a(15﹣8)﹣0.5×8=30﹣7a﹣4=26﹣7a
方案四:W=30﹣a(15﹣9)﹣0.5×9=30﹣6a﹣4.5=25.5﹣6a
方案五:W=30﹣a(15﹣10)﹣0.5×10=30﹣5a﹣5=25﹣5a
由27﹣9a=26.5﹣8a 得a=0.5
方案一对公司更有利.